# INTERACTION OF TRIETHYLALUMINIUM WITH ACETYLACETONATES OF TRANSITION METALS 

F.K. SCHMIDT, G.V. RATOVSKII, T.V. DMITRIEVA,<br>A.A. Zhdanov University, 664003 Irkutsk (U.S.S.R.)<br>I.N. IVLEVA*, and Yu.G. BORODKO<br>Institute of Chemical Physics, USSR Academy of Sciences, 142432 Chernogolovka (U.S.S.R.)

(Received June 1st, 1983)

## Summary

The reaction of $\mathrm{AlEt}_{3}$ with acetylacetonates of $\mathrm{Cr}{ }^{\text {III }}, \mathrm{Fe}^{\mathrm{III}}, \mathrm{Co}^{\mathrm{III}}, \mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Pd}^{\mathrm{II}}$ in benzene and cyclohexane has been studied in a wide range of initial ratios of $\mathrm{AlEt}_{3} / \mathrm{M}(\mathrm{acac})_{n}$. Quantitative analysis of the reaction mixture, performed with the help of UV spectra, showed that acetylacetonate ligands were transferred from the transition metals to aluminium. A scheme involving stepwise substitution of ethyl radicals by acetylacetonate ligands on $\mathrm{AlEt}_{3}$ with further formation of an $\mathrm{Al}(\mathrm{acac})_{3}{ }^{-}$ $\mathrm{Et}_{2} \mathrm{Al}$ (acac) mixture is proposed for $\mathrm{Al} / \mathrm{M}<n(\mathrm{M}=\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni})$. An increase of the $\mathrm{Al} / \mathrm{M}$ ratio causes an increase of the $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ fraction. The only reaction product containing an acetylacetonate ligand is $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ at $\mathrm{Al} / \mathrm{M}=n . \mathrm{Cr}(\mathrm{acac})_{3}$ and $\mathrm{Pd}(\text { acac })_{2}$ interact with $\mathrm{AlEt}_{3}$ forming $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ at any initial ratio of $\mathrm{Al} / \mathrm{M}$. Stabilization of intermediate organo-nickel and -palladium compounds has been observed in the interaction of $\mathrm{AlEt}_{3}$ with $\mathrm{Pd}(\mathrm{acac})_{2}$ and $\mathrm{Ni}(\mathrm{acac})_{2}$ in benzene, which inhibited the reaction rate considerably. Magnetochemical measurements showed that $\mathrm{Fe}^{\mathrm{III}}, \mathrm{Co}^{\mathrm{III}}, \mathrm{Ni}^{\mathrm{II}}$ were reduced to the zerovalent state in their reaction with $\mathrm{AlEt}_{3}(\mathrm{Al} / \mathrm{Mn} \geqslant n)$. The content of the finely dispersed metal component is negligible small and the greater part of transition metal is present as $\mathbf{M}^{0}$ complexes, where $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ formed in the reaction is the main stabilizing ligand.

## Introduction

The catalytic systems of the Ziegler type based on acetylacetonates of transition metals, $\mathbf{M}(\mathrm{acac})_{n}$, and aluminium alkyls have been intensively studied in the processes of hydrogenation, isomerization and oligo- and polymerization of unsaturated compounds. However, the mechanism of the interaction among the system components remains unclear in many aspects. The degree of reduction of transition metals is still the subject of discussion [1,2,3]. The quantitative and qualitative
composition of the reaction products and their dependence on the initial $\mathrm{AlEt}_{3} / \mathrm{M}(\mathrm{acac})_{n}$ ratio have not been characterized.

Our paper presents an attempt to characterize the composition of the reaction products with the help of UV spectra and magnetochemical measurements. The results of earlier investigations have been summarized $[4,5]$. The general scheme of $\mathrm{AlEt}_{3}$ interaction with acetylacetonates of transition metals, $\left(\mathrm{Cr}^{111}, \mathrm{Fe}^{1 \mathrm{II}}, \mathrm{Co}^{1 \mathrm{II}}, \mathrm{Ni}^{11}\right.$, and $\mathrm{Pd}^{\mathrm{II}}$ ), is discussed.

## Results and discussion

The UV spectra of the initial acetylacetonates of transition metals and reaction products are given in Fig. 1. The positions and intensities of the absorption bands of these compounds differ considerably, which permits determination of the concentration of each component in the reaction mixture.

Fe(acac) $)_{3}-$ AlEt $_{3}$
Interaction in cyclohexane. The results are presented in Table 1. Consecutive decay of the intensity of the absorption bands of $\mathrm{Fe}(\mathrm{acac})_{3}$ and the growth of the $\mathrm{Al}(\mathrm{acac})_{3}$ absorption are observed in the spectrum of the reaction mixture for $\mathrm{Al} / \mathrm{Fe}=0.4$. The spectra curves (Fig. 2a) pass through two isobestic points at 276 and 312 nm , which correspond to the equality of values of extinction coefficients of $\mathrm{Fe}(\mathrm{acac})_{3}$ and $\mathrm{Al}(\mathrm{acac})_{3}$. The quantitative analysis of spectra shows that rapid conversion of $\mathrm{Fe}(\mathrm{acac})_{3}$ into $\mathrm{Al}(\mathrm{acac})_{3}$ occurs and in an hour the greater part of the


Fig. I. UV spectra of acetylacetonates of transition metals and aluminium in cyclohexane: solutions of $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ (1), $\mathrm{Al}(\mathrm{acac})_{3}(2), \mathrm{Ni}(\mathrm{acac})_{2}(3), \mathrm{Fe}(\mathrm{acac})_{3}(4), \mathrm{CO}(\mathrm{acac})_{3}(5), \mathrm{Cr}(\mathrm{acac})_{3}$ (6) and $\mathrm{Pd}(\mathrm{acac})_{2}(7)$.

TABLE 1
$\mathrm{Fe}(\mathrm{acac})_{3}, \mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ AND Al(acac) $)_{3}$ CONCENTRATIONS IN THE INTERACTION OF $^{\left(\mathrm{Fe}(\mathrm{acac})_{3}\right.}$ WITH AlEt ${ }_{3}$ IN CYCLOHEXANE

| Al/Fe | Time (min) | $\mathrm{Fe}(\mathrm{acac})_{3}$ |  | $\mathrm{Et}_{2} \mathrm{Al}$ (acac) |  | $\mathrm{Al}^{\text {(acac) }} 3$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $C \times 10^{3}$ <br> ( $M$ ) | \% acac | $\begin{aligned} & \overline{C \times 10^{3}} \\ & (M) \end{aligned}$ | \% acac | $\overline{C \times 10^{3}}$ <br> (M) | \% acac |
| 0.4 | 0 | 0.28 | 100 | $-^{a}$ | - | - | - |
|  | 3 | 0.23 | 81 | - | - | 0.03 | 10 |
|  | 10 | 0.21 | 75 | - | - | 0.04 | 16 |
|  | 20 | 0.20 | 71 | - | - | 0.06 | 20 |
|  | 30 | 0.18 | 65 | - | - | 0.07 | 24 |
|  | 40 | 0.17 | 61 | - | - | 0.08 | 28 |
|  | 50 | 0.16 | 57 | - | - | 0.09 | 33 |
|  | 60 | 0.16 | 55 | - | -. | 0.10 | 35 |
|  | 120 | 0.12 | 42 | - | - | 0.13 | 47 |
| 0.6 | 0 | 0.24 | 100 | - | - | - | - |
|  | 4 | 0.18 | 74 | 0.07 | 10 | 0.03 | 13 |
|  | 10 | 0.16 | 68 | 0.06 | 8 | 0.04 | 18 |
|  | 30 | 0.13 | 53 | 0.05 | 7 | 0.08 | 34 |
|  | 60 | 0.10 | 40 | 0.04 | 6 | 0.12 | 51 |
| 0.9 | 0 | 0.24 | 100 | - | - | - | - |
|  | 3 | 0.07 | 30 | 0.19 | 26 | 0.08 | 33 |
|  | 10 | 0.07 | 30 | 0.16 | 23 | 0.09 | 38 |
|  | 30 | 0.07 | 30 | 0.14 | 19 | 0.11 | 44 |
|  | 60 | 0.07 | 30 | 0.12 | 17 | 0.12 | 49 |
| 1.3 | 0 | 0.22 | 100 | - | - | - | - |
|  | 3 | - | - | 0.24 | . 36 | 0.10 | 45 |
|  | 10 | - | - | 0.21 | 32 | 0.12 | 53 |
|  | 30 | - | - | 0.18 | 28 | 0.13 | 61 |
|  | 60 | - | - | 0.16 | 23 | 0.15 | 66 |
| 2 | 0 | 0.24 | 100 | - | - | - | - |
|  | 3 | - | - | 0.39 | 55 | 0.07 | 28 |
|  | 10 | - | - | 0.37 | 53 | 0.07 | 29 |
|  | 30 | - | - | 0.35 | 49 | 0.08 | 32 |
|  | 120 | - | - | 0.31 | 45 | 0.09 | 38 |
| 2.9 | 0 | 0.24 | 100 | - | - | - | - |
|  | 3 | - | - | 0.44 | 67 | 0.05 | 23 |
|  | 30 | - | - | 0.43 | 63 | 0.06 | 25 |
|  | 90 | - | - | 0.40 | 57 | 0.07 | 28 |
|  | 180 | - | - | 0.39 | 55 | 0.07 | 29 |
|  | 24 h | - | - | 0.34 | 49 | 0.07 | 31 |
| 12 | 0 | 0.30 | 100 | - | - | - | - |
|  | 3 | - | - | 0.88 | 97 | - | _ |
|  | 60 | - | - | 0.77 | 85 | - | - |
|  | 120 | - | - | 0.63 | 69 | - | - |
|  | 180 | - | - | 0.56 | 62 | - | _ |
|  | 240 | - | - | 0.40 | 44 | - | - |
| $10^{b}$ | 0 | 0.58 | 100 | - | - | - | - |
|  | 2 | - | - | 1.72 | 99 | - | - |
|  | 60 | - | - | 1.56 | 90 | - | - |
|  | 120 | - | - | 1.36 | 78 | - | - |
|  | 240 | - | - | 0.98 | 56 | - | - |

[^0]

Fig. 2. Absorption spectra of $\mathrm{Fe}(\mathrm{acac})_{3}$ ( I ) and the interaction of Fe (acac) $)_{3}$ with $\mathrm{AlEt}_{3}$ in cyclohexane at $\mathrm{Al} / \mathrm{Fe}=0.4$ (a), 0.6 (b), 2 (c), 3 (d), 12 (e) and in benzene at $\mathrm{Al} / \mathrm{Fe}=2$ (f), 3 (g) after 2 (2), 10 (3), 20 (4), 30 (5), 40 (6), 50 (7), 60 (8), 120 (9), 180 (10), 240 min (11), 24 hours (12) and 9 days (13).
acetylacetonate ligands is transferred from iron to aluminium. The concentration of unreacted $\mathrm{Fe}(\mathrm{acac})_{3}$ is then lower and that of $\mathrm{Al}(\mathrm{acac})_{3}$ somewhat higher than calculated in accordance with the supposition of direct conversion of $\mathrm{Fe}(\mathrm{acac})_{3}$ into $\mathrm{Al}(\mathrm{acac}){ }_{3}$.

Tamai and Saito [1] proposed their scheme of stepwise reduction of a transition metal:
$\mathrm{Co}(\mathrm{acac})_{3} \rightarrow \mathrm{Co}(\mathrm{acac})_{2} \rightarrow \mathrm{Co}^{0}$
In this case it can be also supposed that a part of the $\mathrm{Fe}(\mathrm{acac})_{3}$ is converted into
$\mathrm{Fe}(\mathrm{acac})_{2}$ and that the decomposition of three molecules of $\mathrm{Fe}(\mathrm{acac})_{3}$ is needed to form one molecule of $\mathrm{Al}(\mathrm{acac})_{3}$. This is the reason for the greater decrease of the $\mathrm{Fe}(\mathrm{acac})_{3}$ concentration than expected from the simplified scheme of formation of $\mathrm{Al}(\mathrm{acac})_{3}$. The $\mathrm{Fe}(\mathrm{acac})_{2}$ spectrum contains an intense band in the region of 294 nm $\left(\epsilon=16001 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$. The overlap of this band with the absorption band of $\mathrm{Al}(\mathrm{acac})_{3}$ leads to the overestimated values of the concentration of the latter in calculations. The formation of $\mathrm{Fe}(\mathrm{acac})_{2}$ can probably occur only at $\mathrm{Fe}(\mathrm{acac})_{3}$ concentrations several times higher than that of $\mathrm{AlEt}_{3}$ in the system, which in this particular case is 2.5.

Increase of the $\mathrm{Al} / \mathrm{Fe}$ ratio up to 0.6 results in a change of the composition of the reaction products, which is confirmed by the appearance of the $\mathrm{Et}_{2} \mathrm{Al}$ (acac) absorption bands. For the first half hour the acetylacetonate ligand transfer from iron ( +3 ) to aluminium takes place, and the spectral curves pass through the isobestic points at 276 and 312 nm . Then the conversion of formed $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ into $\mathrm{Al}(\mathrm{acac})_{3}$ takes place and the spectral curves pass through 266 and 312 nm (Fig. 2b). As in the first case the formation of some $\mathrm{Fe}(\mathrm{acac})_{2}$ as an intermediate can be supposed. Its interaction with $\mathrm{Et}_{2} \mathrm{Al}$ (acac) leads to an increase of the $\mathrm{Al}(\mathrm{acac})_{3}$ concentration in the second stage of the reaction (Table 1).

At an initial ratio $\mathrm{Al} / \mathrm{Fe}=0.9$ the reaction proceeds similarly. A decrease of the intensity of the $\mathrm{Fe}(\mathrm{acac})_{3}$ absorption band is recorded three minutes after mixing the components, because of the formation of a $\mathrm{Al}(\mathrm{acac})_{3}$ and $\mathrm{Et}_{3} \mathrm{Al}$ (acac) mixture. The comparison of the reaction rates of $\mathrm{Fe}(\mathrm{acac})_{3}$ and $\mathrm{AlEt}_{3}$ for the first 10 min at $\mathrm{Al} / \mathrm{Fe}=0.4\left(k=6.7 \times 10^{-6} \mathrm{~mol} \mathrm{l}^{-1} \mathrm{~min}^{-1}\right)$ and $\mathrm{Al} / \mathrm{Fe}=0.9\left(k=1.7 \times 10^{-5} \mathrm{~mol}\right.$ $1^{-1} \min ^{-1}$ ) show that the rate increases with the increase of the $\mathrm{Et}_{3} \mathrm{Al}$ concentration in the system.

Increase of the $\mathrm{Al} / \mathrm{Fe}$ ratio up to 1.3 leads to fast transfer of acac ligands from iron to aluminium. The $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ and $\mathrm{Al}(\mathrm{acac})_{3}$ bands are observed in the reaction mixture spectrum 3 min after the beginning the reaction; the absorption of initial $\mathrm{Fe}(\mathrm{acac})_{3}$ is not observed.

At $\mathrm{Al} / \mathrm{Fe}=2$ and 2.9 ratios the fast transfer of acac ligands from iron to aluminium and the formation of two reaction products are also observed (Fig. 2c). The amount of $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ formed increases with increase of the $\mathrm{AlEt}_{3}$ content in the system. Thus, after 24 hours of the reaction the $\mathrm{Et}_{2} \mathrm{Al}$ (acac) concentration is 1.5 and 4.7 times higher than that of $\mathrm{Al}(\mathrm{acac})_{3}$ at $\mathrm{Al} / \mathrm{Fe}=2$ and 2.9 ratios, respectively (Table 1).

A threefold excess of $\mathrm{Et}_{3} \mathrm{Al}$ leads to a $100 \%$ yield of $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ $\left(C\left(\mathrm{Fe}(\mathrm{acac})_{3}\right)\right.$ init. $\left.=0.28 \times 10^{-3} M, C\left(\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})\right)=0.83 \times 10^{-3} \mathrm{M}\right)$. The spectrum of the reaction mixture 9 days after the beginning of the interaction completely coincides with the spectrum of pure $\mathrm{Et}_{2} \mathrm{Al}$ (acac) (Fig. 2d).

An $\mathrm{Al} / \mathrm{Fe}=5.1$ ration gives an analogous picture, but later the concentration of $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ formed decreases from $0.69 \times 10^{-3} \mathrm{M}(3 \mathrm{~min})$ to $0.63 \times 10^{-3} \mathrm{M}$ (4 $\min ), \mathrm{C}\left(\mathrm{Fe}(\mathrm{acac})_{3}\right)$ init. $=0.23 \times 10^{-3} \mathrm{M}$.

A larger $\mathrm{AlEt}_{3}$ excess $(\mathrm{Al} / \mathrm{Fe}=12)$ leads to a gradual decrease in intensity of the absorption bands of $\mathrm{Et}_{2} \mathrm{Al}$ (acac) and to their complete disappearance (Fig. 2e). The observed bands of $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ in the spectrum are assigned to $\pi-\pi^{\star}$ transitions in acac ligands [4], and the disappearance of these bands indicates the decomposition of the $\pi$ system of the acac ligand in the interaction of $\mathrm{Et}_{2} \mathrm{Al}$ (acad) with $\mathrm{AlEt}_{3}$. This confirms the scheme for aluminium alkyls interaction with $\mathrm{Alk}_{2} \mathrm{Al}$ (acac) as sug-
gested by Kroll [6]:

Interaction in benzene. At $1<\mathrm{Al} / \mathrm{Fe}<3 \mathrm{a}$ mixture of $\mathrm{Al}(\mathrm{acac})_{3}$ and $\mathrm{Et}_{2} \mathrm{Al}$ (acac) is formed, the proportion of the latter increasing with increase of the initial $\mathrm{Al} / \mathrm{Fe}$ ratio. A quantitative estimation of the components of the reaction mixture cannot be made because of the strong absorption bands of benzene and overlap of absorption bands in the region free from benzene absorption (Fig. 2f).

At $\mathrm{Al} / \mathrm{Fe}<1$ quantitative analysis is also impossible because of the strong overlap of the absorption bands of $\mathrm{Fe}(\mathrm{acac})_{3}, \mathrm{Al}(\mathrm{acac})_{3}$, and $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$. The initial $\mathrm{Al} / \mathrm{Fe}=3$ ratio provides a $100 \%$ yield of $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})\left(C\left(\mathrm{Fe}(\mathrm{acac})_{3}\right)\right.$ init. $=$ $\left.0.57 \times 10^{-3} M, C\left(\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})\right)=1.7 \times 10^{-3} \mathrm{M}\right)$. The spectrum of the reaction mixture remains unchanged for several days and nights (Fig. 2 g ).

The rate of decomposition of $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ in the presence of excess $\mathrm{AlEt}_{3}$ in the system ( $\mathrm{Al} / \mathrm{Fe}>3$ ) is comparable to that of the similar process in cyclohexane (Table 1).

## $\mathrm{Ni}(\mathrm{acac})_{2}-\mathrm{AlEt}_{3}$

Interaction in cyclohexane. The results of the quantitative analysis of the reaction solution spectra are given in Table 2. At $\mathrm{Al} / \mathrm{Ni}=0.5$ intensity decrease of the absorption bands at 310 nm and increase of absorption at 263 and 294 nm (Fig. 3a) are observed, which is explained by the removal of $\mathrm{Ni}(\mathrm{acac})_{2}$ and the formation of $\mathrm{Al}(\mathrm{acac})_{3}$ and some $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$. The strong overlap of the bands hinders accurate calculation of $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ concentrations. Quantitative analysis of the two-component spectra shows gradual decay of the $\mathrm{Ni}(\mathrm{acac})_{2}$ concentration down to $65 \%$ of the initial concentration and similtaneous formation of $\mathrm{Al}(\mathrm{acac})_{3}$ in up to $25 \%$ yield during the first hour of the process. The total of acac ligands for the control points ( $2,10,30,60 \mathrm{~min}$ ) does not exceed $90 \%$, the remaining $10 \%$ are assigned to the unaccounted $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$. The spectrum recorded a day after the reaction started showed an additional $3 \%$ decrease of $\mathrm{Ni}(\mathrm{acac})_{2}$ concentration, while the $\mathrm{Al}(\mathrm{acac})_{3}$ concentration had increased by $14 \%$ (Table 2), which was in contradiction with the scheme involving direct conversion of $\mathrm{Ni}(\mathrm{acac})_{2}$ into $\mathrm{Al}(\mathrm{acac})_{3}$. Consequently, the formation of $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ may be supposed in the first stage of successive substitution of ethyl radicals in $\mathrm{Et}_{3} \mathrm{Al}$ by acac ligands in the reaction of $\mathrm{Et}_{3} \mathrm{Al}$ with both $\mathrm{Ni}(\mathrm{acac})_{2}$ and $\mathrm{Fe}(\mathrm{acac})_{3}$. Then the $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ formed could react with $\mathrm{Ni}(\mathrm{acac})_{2}$ present in the reaction mixture, producing $\mathrm{EtAl}(\mathrm{acac})_{2}$ and $\mathrm{Al}(\mathrm{acac})_{3}$, the former instantly disproportionating into $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ and $\mathrm{Al}(\mathrm{acac})_{3}[6]$. The latter, a coordinatively saturated stable aluminium compound, does not participate in further conversion. $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ may react again, thus the main product of the reaction is $\mathrm{Al}(\mathrm{acac})_{3}$ at $\mathrm{Al} / \mathrm{Ni}<1$.

The formal scheme of the stepwise substitution of ethyl radicals in $\mathrm{AlEt}_{3}$ for acac ligands is considered for the $\mathrm{Ni}(\mathrm{acac})_{2} \mathrm{AlEt}_{3}$ system (see eq. 3).

At initial $\mathrm{Al} / \mathrm{Ni}=0.7$ the spectra showed the simultaneous presence of three components: $\mathrm{Ni}(\mathrm{acac})_{2}, \mathrm{Al}(\mathrm{acac})_{3}, \mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$. The concentration of initial $\mathrm{Ni}(\mathrm{acac})_{2}$ decreased and that of $\mathrm{Al}(\mathrm{acac})_{3}$ increased during the reaction. The relative

TABLE 2
$\mathrm{Ni}(\mathrm{acac})_{2}, \mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ AND Al(acac) $\mathbf{3}_{3}$ CONCENTRATIONS IN THE INTERACTION OF $\mathrm{Ni}(\mathrm{acac})_{2}$ WITH AlEt ${ }_{3}$ IN CYCLOHEXANE

| $\overline{\mathrm{Al} / \mathrm{Ni}}$ | $\begin{aligned} & \text { Time } \\ & (\mathrm{min}) \end{aligned}$ | $\mathrm{Ni}^{\text {(acac) }}{ }_{2}$ |  | $\mathrm{Et}_{2} \mathrm{Al}$ (acac) |  | $\mathrm{Al}^{\text {(acac) }} 3$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\overline{C \times 10^{3}}$ <br> ( $M$ ) | \% acac | $\overline{C \times 10^{3}},$ <br> (M) | \% acac | $\begin{aligned} & C \times 10^{3} \\ & (M) \end{aligned}$ | \% acac |
| 0.5 | 0 | 0.60 | 100 | $-^{a}$ | - | - | - |
|  | 2 | 0.51 | 85 | - | - | 0.02 | 6 |
|  | 10 | 0.47 | 78 | - | - | 0.05 | 12 |
|  | 30 | 0.43 | 72 | - | - | 0.08 | 19 |
|  | 60 | 0.39 | 65 | - | - | 0.10 | 25 |
|  | 24h | 0.37 | 62 | - | - | 0.16 | 39 |
| 0.7 | 0 | 0.62 | 100 | - | - | - | - |
|  | 3 | 0.38 | 61 | 0.19 | 15 | 0.11 | 27 |
|  | 10 | 0.35 | 56 | 0.21 | 17 | 0.14 | 32 |
|  | 30 | 0.29 | 47 | 0.23 | 18 | 0.17 | 41 |
|  | 60 | 0.27 | 44 | 0.21 | 17 | 0.19 | 47 |
|  | 24h | 0.21 | 33 | 0.18 | 15 | 0.25 | 60 |
| 1.3 | 0 | 0.47 | 100 | - | - | - | - |
|  | 3 | - | - | 0.51 | 63 | 0.09 | 33 |
|  | 10 | - | - | 0.51 | 63 | 0.09 | 33 |
|  | 30 | - | - | 0.52 | 64 | 0.09 | 34 |
|  | 24h | - | - | 0.47 | 57 | 0.11 | 40 |
| 1.5 | 0 | 0.41 | - | - | - |  | - |
|  | 3 | - | - | 0.55 | 68 | 0.08 | 31 |
|  | 24h | - | - | 0.51 | 62 | 0.10 | 36 |
| 1.8 |  | 0.62 | 100 | - | - |  | - |
|  | 2 | - | - | 0.85 | 65 | 0.14 | 34 |
|  | 60 | - | - | 0.96 | 77 | 0.12 | 28 |
| 3.0 |  | 0.33 | 100 |  |  |  | - |
|  | 2 | - | - | 0.63 | 96 | - | - |
|  | 10 | - | - | 0.61 | 93 | - | - |
|  | 60 | - | - | 0.60 | 92 | - | - |
| 10.0 | 0 | 0.33 | 100 | - | - | - | - |
|  | 2 | - | - | 0.47 | 72 | - | - |
|  | 10 | - | - | 0.40 | 62 | - | - |
|  | 30 | - | - | 0.31 | 48 | - | - |
|  | 60 | - | - | 0.24 | 37 | - | - |
|  | 24 h | - | - | 0.07 | 11 | - | - |
| 15.0 | 0 | 0.33 | 100 | - | - | - | - |
|  | 2 | - | - | 0.38 | 58 | - | - |
|  | 10 | - | - | 0.25 | 39 | - | - |
|  | 30 | - | - | 0.17 | 27 | - | - |
|  | 60 | - | - | 0.11 | 17 | - | - |
|  | 24 h | - | - | 0.03 | 4 | - | - |

${ }^{a}$ Product not detected. $\%$ acac for $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})=\left(2 C\left(\mathrm{Et}_{2}(\mathrm{acac}) / C\left(\mathrm{Ni}(\mathrm{acac})_{2}\right)_{\text {init }}\right) \times 100 \%\right.$; \% acac for $\mathrm{Al}(\mathrm{acac})_{3}=\left(1.5 \mathrm{C}\left(\mathrm{Al}(\mathrm{acac})_{3}\right) \times 3 / \mathrm{C}\left(\mathrm{Ni}(\mathrm{acac})_{2}\right)_{\text {ini. }}\right) \times 100 \%$.
constancy of the $\mathrm{Et}_{2} \mathrm{Al}$ (acac) concentration (Table 2) could be explained by its independence of the three processes in eq. 3.

Increase of the initial $\mathrm{Al} / \mathrm{Ni}$ ratio to $1.3,1.5$ or 1.8 led to a faster transfer of acac ligands from nickel to aluminium. After $2-3 \mathrm{~min}$ the $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ and $\mathrm{Al}(\mathrm{acac})_{3}$ absorption bands appeared in the spectrum of the mixture: the absorption bands of

where $A$ is an acac ligand, $\mathbf{R}$ is an ethyl radical, and G.Pr. are gaseous products.
initial $\mathrm{Ni}(\mathrm{acac})_{2}$ not being observed. The amount of $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ among the reaction products grew with increase of the initial $\mathrm{Al} / \mathrm{Ni}$ ratio (Table 2). Significant conversion of $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ into $\mathrm{Al}(\mathrm{acac})_{3}$, involving $\mathrm{EtNi}(\mathrm{acac})$ or $\mathrm{Ni}(\mathrm{acac})_{2}$ according to eq. 3, did not occur (Fig. 3b, Table 2). This is probably connected with the absence of the above-mentioned $\mathrm{Ni}(\mathrm{acac})_{2}$ at the required stage of the reaction and with the improbability of IIa and IIc routes (eq. 3).

A two-fold excess of $\mathrm{Et}_{3} \mathrm{Al}$ results in a $100 \%$ yield of $\mathrm{Et}_{2} \mathrm{Al}$ (acac) $\left(C\left(\mathrm{Ni}(\mathrm{acac})_{2}\right)\right.$ init. $\left.=0.62 \times 10^{-3} \mathrm{M} ; C\left(\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})\right)=1.2 \times 10^{-3} \mathrm{M}\right)$. The spectrum of the mixture after three-days coincides completely with that of pure $\mathrm{Et}_{2} \mathrm{Al}$ (acac) (Fig. 3c). According to eq. 3 the formation of only $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac}$ ) is conditioned by route IIb , which agrees with the higher $\mathrm{AlEt}_{3}$ reactivity in comparison with $\mathrm{Et}_{2} \mathrm{Al}$ (acac) [6].

Excess $\mathrm{AlEt}_{3}(\mathrm{Al} / \mathrm{Ni}=3,10,15)$ also results in instantaneous formation of $\mathrm{Et}_{2} \mathrm{Al}$ (acac), which interacts with the $\mathrm{AlEt}_{3}$ residue with cleavage of the acac ligand in accordance with the above scheme (Fig. 3d). The decomposition rate is proportional to the $\mathrm{AlEt}_{3}$ concentration in the system (Table 2).

Interaction in benzene. It was not possible to analyze the reaction mixture quantitatively at $\mathrm{Al} / \mathrm{Ni}<2$, because of the benzene absorption strong overlap of the absorption bands above 270 nm . Qualitative estimation of the spectra at $\mathrm{Al} / \mathrm{Ni}=1$ suggests a gradual transition of acac ligands from nickel to aluminium with the formation of $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ and $\mathrm{Al}(\mathrm{acac})_{3}$, the amount of the latter increasing at the expense of the former (Fig. 3e).

At $\mathrm{Al} / \mathrm{Ni}=2.1$ obvious signs of the reaction appear immediately after mixing the components: the green colour of the solution turns to dark brown. The spectrum of the reaction mixture recorded after 2 min shows a new absorption band at 290 nm , which cannot be assigned to any of the final products. Overlapping the $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ absorption band ( $\lambda_{\max }=315 \mathrm{~nm}$ ), it presents a broad band at 275-330 nm. Then during the following 2 hours a decrease of absorption in the region $285-295 \mathrm{~nm}$ is observed and a minimum is seen at 288 nm (Fig. 3f). The spectrum of the same


Fig. 3. Absorption spectra of $\mathrm{Ni}(\mathrm{acac})_{2}$ (I) and the interaction of $\mathrm{Ni}\left(\mathrm{acac}_{2}\right)_{2}$ with $\mathrm{AlEt}_{3}$ in cyclohexane at $\mathrm{Al} / \mathrm{Ni}=0.5$ (a), 1.5 (b), 2 (c), 15 (d) and in benzene at $\mathrm{Al} / \mathrm{Ni}=1$ (e), 2.1 (f), 5 (g) after 3 (2), 10 (3), 30 (4), 60 (5), 120 min (6), 24 hours (7), 3 days (8) and 12 days (9).
system 24 h later coincides in all parameters with that of pure $\mathrm{Et}_{2} \mathrm{Al}$ (acac) formed in $100 \%$ yield $\left(C\left(\mathrm{Ni}(\mathrm{acac})_{2}\right)\right.$ init. $\left.=0.6 \times 10^{-3} M ; C\left(\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})\right)=1.2 \times 10^{-3} \mathrm{M}\right)$. Thus the period conversion of $\mathrm{Ni}(\mathrm{acac})_{2}$ into $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ in benzene is much longer than in cyclohexane. Over 12 days the spectrum in a hermetic system remains almost unchanged.

A similar picture is observed in the spectrum of the reaction mixture at $\mathrm{Al} / \mathrm{Ni}=5$, though the process proceeds faster. Already after 2 hours the spectrum of the system is similar to that of pure $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ (Fig. 3 g ).

According to eq. 3 the additional absorption band ( $\lambda_{\max }=290 \mathrm{~nm}$ ) can be assigned to the intermediate $\mathrm{EtNi}(\mathrm{acac})$ stabilized in benzene. To confirm this supposition a $\mathrm{Ni}^{\mathrm{II}}$ compound with one acac group, $\mathrm{EtNiP}(\mathrm{c}-\mathrm{Hex})_{3}(\mathrm{acac})$, was chosen as a model. There is an absorption band in its UV spectra: $\lambda_{\max }=290 \mathrm{~nm}$,
$\epsilon=128001 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$, which allows identification of the band observed in the $\mathrm{Ni}(\mathrm{acac})_{2}-\mathrm{AlEt}_{3}$ system as that of $\mathrm{EtNi}(\mathrm{acac})$.

The difference in the reaction rates of $\mathrm{Ni}(\mathrm{acac})_{2}$ with $\mathrm{AlEt}_{3}$ in cyclohexane and benzene agrees with the formation of different gaseous products in aromatic and saturated hydrocarbons [7]. When $\mathrm{AlEt}_{3}$ interacts with $\mathrm{Ni}(\mathrm{acac})_{2}$ in hexane, ethane and ethylene comprise $90 \%$ of the gaseous products. The total yield does not exceed 2 mol per g atom Ni , which agrees with eq. 3. The reaction in toluene leads to an increase in the proportion of alkene, and the total yield of gaseous products reaches 6 mol per g atom Ni at $\mathrm{Al} / \mathrm{Ni}=8$. To our mind, this is connected with almost spontaneous substitution of acac ligands on Ni by ethyl radicals in saturated hydrocarbon solution, and ethane, ethylene and $\mathrm{Ni}^{0}$ are formed from the decomposition of alkylnickel molecules. Benzene stabilizes intermediate Ni compounds, the reaction slows down and, since $\mathrm{RNi}(\mathrm{acac})$ is a catalyst of ethylene dimerization [8], it promotes the formation of a large amount of butenes. The interaction of intermediate Ni compounds with $\mathrm{AlEt}_{3}$ results in greater conversion of the latter in benzene.

Co(acac) $3_{3}-$ AlEt $_{3}$
Interaction in cyclohexane. The results are presented in Table 3. At Al/Co $=0.5$ a stepwise decrease of the intensity of $\mathrm{Co}(\mathrm{acac})_{3}$ absorption bands is observed at 228 and 257 nm and then an increase in the region of 285 and 295 nm (Fig. 4a). Quantitative analysis of the spectra with the respect to the three components shows conversion of $\mathrm{Co}(\mathrm{acac})_{3}$ into $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ and $\mathrm{Al}(\mathrm{acac})_{3}$. After 3 min the concentration of $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ formed is 1.5 times higher than that of $\mathrm{Al}\left(\mathrm{acac}_{3}\right)_{3}$ and an hour later the latter is three times the former. Thus $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ formed in the first stage interacts with $\mathrm{Co}(\mathrm{acac})_{3}$ present in the reaction mixture to form $\mathrm{Al}(\mathrm{acac})_{3}$. According to the scheme of stepwise substitution of ethyl radicals in $\mathrm{AlEt}_{3}$ by acac ligands, $\mathrm{EtCo}(\mathrm{acac})_{2}, \mathrm{Co}(\mathrm{acac})_{2}, \mathrm{EtCo}(\mathrm{acac})$ and $\mathrm{Et}_{2} \mathrm{Co}(\mathrm{acac})$ may be formed as intermediates containing acac ligands in the $\mathrm{Co}(\mathrm{acac})_{3}-\mathrm{AlEt}_{3}$ system. All the Co compounds can be the sources of acac ligands at $\mathrm{Al} / \mathrm{Co}=0.5$.

A rapid decrease of the intensity of absorption bands of initial $\mathrm{Co}(\mathrm{acac})_{3}$ is observed at $\mathrm{A} / \mathrm{Co}=1.3,2$ and 2.5 . The spectra recorded after $3-10 \mathrm{~min}$ shows the presence of two products in the system, $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ and $\mathrm{Al}(\mathrm{acac})_{3}$. The concentration of the former decreases at the expense of the latter. The proportion of $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ among the reaction products increases with the increase of the initial $\mathrm{Al} / \mathrm{Co}$ ratio (Table 3). The sources of acac ligands in this case may be acetylacetonates of $\mathrm{Co}^{1 \mathrm{I}}$ and $\mathrm{Co}^{111}$, since initial $\mathrm{Co}(\mathrm{acac})_{3}$ is exhausted after $3-10 \mathrm{~min}$ (Table 3). $\mathrm{Co}(\mathrm{acac})_{2}$ is a stable chemical compound, its absorption band ( $\lambda_{\max }=292$ $\mathrm{nm}, \epsilon=162001 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$ ) [9] coincides and can be overlapped by the stronger band of $\mathrm{Al}(\mathrm{acac})_{3}: \lambda_{\max }=288 \mathrm{~nm}, \varepsilon=436001 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$. The extinction coefficient (calc. per acac group) is equal to $145001 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$ and $81001 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$ for $\mathrm{Al}(\mathrm{acac})_{3}$ and $\mathrm{Co}(\mathrm{acac})_{2}$, respectively. Therefore we are making a mistake in the calculation of its concentration if we assign the absorption in the $285-295 \mathrm{~nm}$ region to $\mathrm{Al}(\mathrm{acac})_{3}$ only. It is small at low contents of $\mathrm{Co}(\mathrm{acac})_{2}$. The appearance of a new absorption band at 238 nm ( $\mathrm{Al} / \mathrm{Co}=1.3$, Fig. 4b), which cannot be assigned to any of the considered stable Co and Al compounds, suggests the presence of intermediate Co compounds after 3 min .

The ratio of $\mathrm{Al} / \mathrm{Co}=3.2$ is characterized by the instantaneous formation of

TABLE 3
$\mathrm{Co}\left(\mathrm{acac}_{3}{ }_{3}, \mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})\right.$ AND Al(acac) ${ }_{3}$ CONCENTRATIONS IN THE INTERACTION OF Co(acac) ${ }_{3}$ WITH AlEt ${ }_{3}$ IN CYCLOHEXANE

| Al/Co | Time | $\mathrm{Co}(\mathrm{acac})$ |  | $\mathrm{Et}_{2} \mathrm{Al}$ (ac |  | $\mathrm{Al}(\mathrm{acac})_{3}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | (min) | $\begin{aligned} & \overline{C \times 10^{3}} \\ & (M) \end{aligned}$ | \% acac | $\begin{aligned} & \overline{C \times 10^{3}}, \\ & (M) \end{aligned}$ | \% acac | $\begin{aligned} & \overline{C \times 10^{3}}, \\ & (M) \end{aligned}$ | \% acac |
| 0.5 | 0 | 0.27 | 100 | - ${ }^{\text {a }}$ | - | - | - |
|  | 3 | 0.18 | 67 | 0.09 | 11 | 0.06 | 22 |
|  | 10 | 0.17 | 63 | 0.06 | 7 | 0.08 | 29 |
|  | 30 | 0.15 | 56 | 0.04 | 5 | 0.10 | 38 |
|  | 60 | 0.15 | 56 | 0.03 | 4 | 0.11 | 41 |
|  | 120 | 0.14 | 52 | 0.03 | 4 | 0.12 | 44 |
|  | 24 h | 0.12 | 44 | 0.05 | 6 | 0.13 | 48 |
| 1.3 | 0 | 0.22 | 100 | - | - | - |  |
|  | 10 | - | - | 0.17 | 26 | 0.13 | 59 |
|  | 30 | - | - | 0.16 | 24 | 0.14 | 64 |
|  | 60 | - | - | 0.15 | 23 | 0.14 | 64 |
|  | 120 | - | - | 0.13 | 20 | 0.15 | 68 |
|  | 24 h | - | - | 0.16 | 24 | 0.14 | 64 |
| 2.0 | 0 | 0.27 | 100 | - | - | - | - |
|  | 3 | - | - | 0.50 | 62 | 0.07 | 26 |
|  | 10 | - | - | 0.48 | 59 | 0.08 | 30 |
|  | 30 | - | - | 0.41 | 51 | 0.10 | 37 |
|  | 60 | - | - | 0.37 | 46 | 0.12 | 45 |
| 2.5 | 0 | 0.22 | 100 | - | - | - | - |
|  | 2 | - | - | 0.44 | 67 | 0.06 | 27 |
|  | 10 | - | - | 0.42 | 64 | 0.08 | 36 |
|  | 30 | - | - | 0.40 | 61 | 0.08 | 36 |
|  | 60 | - | - | 0.40 | 61 | 0.08 | 36 |
|  | 24 h | - | - | 0.38 | 58 | 0.09 | 41 |
| 10 | 0 | 0.26 | 100 | - | - | - | - |
|  | 10 | - | - | 0.71 | 92 | - | - |
|  | 60 | - | - | 0.62 | 80 | - | - |
|  | 120 | - | - | 0.55 | 72 | - | - |
| $10^{6}$ | 0 | 1.14 | 100 | - | - | - | - |
|  | 2 | - | 100 | 3.27 | 96 | - | - |
|  | 10 | - | - | - 2.97 | 87 | - | - |
|  | 30 | - | - | 2.65 | 78 | - | - |
|  | 60 | - | - | 2.24 | 66 | - | - |
|  | 120 | - | - | 1.68 | 49 | - | - |
|  | 24 h | - | - | 0.24 | 7 | - | - |

${ }^{a}$ Product not detected. ${ }^{b}$ In benzene.
$\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ with $100 \%$ yield $\left(C\left(\mathrm{Co}(\mathrm{acac})_{3}\right)\right.$ init. $=0.27 \times 10^{-3} \mathrm{M} ; C\left(\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})\right)=$ $\left.0.80 \times 10^{-3} \mathrm{M}\right)$. The spectrum of the reaction mixture remains unchanged for several days.

At an increased initial $\mathrm{Al} / \mathrm{Co}$ ratio up to $5 \mathrm{Et}_{2} \mathrm{Al}($ acac) is also formed, but its concentration in the system decreases $\left(C\left(C o(a c a c)_{3}\right)\right.$ init. $=0.21 \times 10^{-3} \mathrm{M}$; $\left.C\left(\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})\right)=0.62 \times 10^{-3} \mathrm{M}\right) .(3 \mathrm{~min}) ; C\left(\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})\right)=0.55 \times 10^{-3} \mathrm{M}(48 \mathrm{~h})$. A larger excess of $\mathrm{AlEt}_{3}$ results in faster decomposition of $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ (Table 3).

Interaction in benzene. A mixture of the substitution products, $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ and $\mathrm{Al}(\mathrm{acac})_{3}$, is formed at $0<\mathrm{Al} / \mathrm{Co}<3$. The proportion of the former among the


Fig. 4. Absorption spectra of $\mathrm{Co}(\mathrm{acac})_{3}(\mathrm{I})$ and the interaction of $\mathrm{Co}(\mathrm{acac})_{3}$ with $\mathrm{AlEt}_{3}$ in cyclohexane at $\mathrm{Al} / \mathrm{Co}=0.5$ (a), and 1.3 (b) after 3 (2), 10 (3), 30 (4), 60 (5), 120 min (6) and 24 hours (7).
reaction products increases with increasing $\mathrm{AlEt}_{3}$ content in the system. At $\mathrm{Al} / \mathrm{Co}$ $=3 \mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ is produced in $100 \%$ yield $\left(\mathrm{C}\left(\mathrm{Co}(\mathrm{acac})_{3}\right)\right.$ init. $=0.90 \times 10^{-3} \mathrm{M}$; $\left.C\left(\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})\right)=2.7 \times 10^{-3} \mathrm{M}\right)$. Excess $\mathrm{AlEt}_{3}$ in the system $(\mathrm{Al} / \mathrm{Co}>3$ ) leads to gradual decomposition of the $\mathrm{Et}_{2} \mathrm{Al}$ (acac) formed. The rate of $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ decomposition in benzene depends on the initial $\mathrm{Al} / \mathrm{Co}$ ratio and is comparable with that in cyclohexane.

The interaction of $\mathrm{AlEt}_{3}$ with $\mathrm{Co}^{\text {II }}$ and $\mathrm{Co}^{\text {III }}$ acetylacetonates has been studied by ESR spectroscopy. At $\mathrm{Al} / \mathrm{Co}>3$ the formation of paramagnetic complexes of $\mathrm{Co}^{0}$ was found in aromatic hydrocarbons, where $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ is considered to be one of the ligands, stabilizing Co in this anomalously low oxidation state [10].

The present work reports our magnetochemical investigations of the reaction products, carried out to characterize the state of metals in the $\mathrm{M}(\mathrm{acac})_{n}-\mathrm{AlEt}_{3}$ system at initial $\mathrm{Al} / \mathrm{M}>n$. After measurement of the magnetic susceptibility, $\chi$ at, in a magnetic field of $0-1 \mathrm{~T}$ at $4.2-295 \mathrm{~K}$, we calculated metal contents for each system in the ferro-, dia- and paramagnetic states.

The ferromagnetic components in these states is temperature dependent and the samples are saturated at 4.2 K only. Such a behavior is characteristic of finely dispersed (up to $100 \AA$ ) super-paramagnetic particles. Quantitative analysis shows the proportion of the ferromagnetic component to not exceed $3-8 \%$ in all cases (Table 4).

The contents of the paramagnetic metal component and the corresponding value of the magnetic moment were determined for 4.2 K , i.e. under the condition of saturation. It was shown that for the system $\mathrm{Co}(\mathrm{acac})_{3}-\mathrm{AlEt}_{3}$ the proportion of finely dispersed $\mathrm{Co}^{\circ}$ is $7-8 \%$ and the remaining $92 \% \mathrm{Co}$ are assigned to the paramagnetic complexes. The value of the magnetic moment, $\mu_{\text {eff }}$, is 1.66 B.M., i.e. close to the pure spin value for one uncoupled electron and is characteristic of both

TABLE 4
MAGNETIC STATE OF METAL IN PRODUCTS OF M(acac) ${ }_{n}+$ AlEt $_{3}$ INTERACTION $^{\text {IN }}$
$\left.\begin{array}{lllcll}\hline \text { System } & \mathrm{Al} / \mathrm{M} & \begin{array}{l}\text { State }\end{array} & \begin{array}{l}\text { Ferromagnetic } \\ \text { (\%) }\end{array} & \begin{array}{l}\text { Paramag- } \\ \text { netic (\%) }\end{array} & \mu_{\text {eff }}\end{array} \begin{array}{l}\text { Diamagnetic } \\ \text { (\%) }\end{array}\right]$
${ }^{a}$ The magnetic moment is calculated for $T=4.2 \mathrm{~K}$. The difference between the total contents of metal and ferromagnetic fraction is taken for the paramagnetic component.
$\mathrm{Co}^{0}$ and low spin $\mathrm{Co}^{\text {II }}$ complexes with $d^{9}$ and $d^{7}$ electron configurations, respectively.

A considerable change in the magnetic properties of the sample is observed after it is exposed to air, the ferromagnetic component disappears completely, and the value of $\mu_{\text {eff }}$ decreases from 1.66 to 1.36 B.M. (after 2 days), and then it increases and reaches its final value of 4.85 B.M. after 10 days. According to ligand field theory, such a value of the magnetic moment is charactersitic of high spin $\mathrm{Co}^{\text {II }}$ complexes in a tetrahedral ligand field ( $d^{7}$ configuration). Thus the results indicate oxidation of the reduced $\mathrm{Co}^{\circ}$ in the air via diamagnetic $\mathrm{Co}^{\mathrm{I}}$ state according to the scheme:
$\mathrm{Co}^{0} \rightarrow \mathrm{Co}^{\mathrm{I}} \rightarrow \mathrm{Co}^{\mathrm{II}}$
In the $\mathrm{Ni}(\mathrm{acac})_{2}-\mathrm{AlEt}_{3}$ system the contribution of the ferromagnetic component is $2-3 \%$ and the remaining $97 \%$ are assigned to diamagnetic complexes. Besides $\mathrm{Ni}^{0}$ complexes with electronic configuration $d^{10}$, there may also be tetracoordinated square planar $\mathrm{Ni}(\mathrm{II})$ complexes. On autoxidation the sample becomes fully paramagnetic, which confirms the transition of diamagnetic $\mathrm{Ni}(0)$ complexes into paramagnetic ones with a magnetic moment of $\mu_{\text {eff }}=3.23$ B.M., corresponding to Ni (II) in a tetrahedral ligand field. The ferromagnetic component also oxidizes completely. Similar results are obtained for the $\mathrm{Fe}(\mathrm{acac})_{3}-\mathrm{AlEt}_{3}$ system (Table 4).

The application of UV spectroscopy to the interaction of $\mathrm{AlEt}_{3}$ with $\mathrm{Fe}^{\mathrm{III}}, \mathrm{Co}^{\mathrm{III}}$ and $\mathrm{Ni}^{\mathrm{II}}$ acetylacetonates allowed us to characterize quantitatively the composition of the reaction products, containing acac ligands on aluminium at different moments and in a wide range of initial $\mathrm{Al} / \mathrm{M}$ ratios. It was then established that acac ligands were transfered from a transition metal to aluminium and a two-product mixture of $\mathrm{Al}(\mathrm{acac})_{3}$ and $\mathrm{Et}_{2} \mathrm{Al}$ (acac) was formed. The proportion of the latter increased with increasing initial $\mathrm{AlEt}_{3} / \mathrm{M}(\mathrm{acac})_{n}$ ratio and reached $100 \%$ for $\mathrm{Al} / \mathrm{M}=n$. The reaction of $\mathrm{Ni}(\mathrm{acac})_{2}$ with $\mathrm{AlEt}_{3}$ in benzene showed stabilization of organonickel compounds and a considerable decrease of the reaction rate. $\mathrm{Et}_{2} \mathrm{Al}$ (acac) formed in the $\mathrm{M}(\mathrm{acac})_{n}-\mathrm{AlEt}_{3}$ system $(\mathrm{Al} / \mathrm{M}=n)$ remained unchanged. At $\mathrm{Al} / \mathrm{M}>n$ the excess $\mathrm{AlEt}_{3}$ interacted with $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ eliminating acetylacetonate. The rate of this process increases with increasing initial $\mathrm{Al} / \mathrm{M}$ ratio.

The magnetic data showed that reduction of the transition metal to the zerovalent state occurred in the $\mathrm{M}\left(\mathrm{acac}_{n}-\mathrm{AlEt}_{3}\right.$ system at $\mathrm{Al} / \mathrm{M} \geqslant n, \mathrm{M}^{0}$ existing in the solution as complexes. $\mathrm{Et}_{2} \mathrm{Al}$ (acac) was one of the ligands stabilizing the metal in anomalously the low oxidation state. The results were incorperated into a scheme for the stepwise substitution of ethyl radicals by acac ligands in $\mathrm{AIEt}_{3}$, representing the interaction of $\mathrm{AlEt}_{3}$ with $\mathrm{Fe}^{\mathrm{III}}, \mathrm{Co}^{\mathrm{III}}, \mathrm{Ni}^{\mathrm{II}}$ acetylacetonates:

where M is $\mathrm{Fe}^{\mathrm{III}}, \mathrm{Co}^{\mathrm{III}}, \mathrm{Ni}^{\mathrm{II}}, \mathrm{A}$ is acac, R is Et and G.Pr. are gaseous products.
$\mathrm{Cr}(\mathrm{acac})_{3}-\mathrm{AlEt}_{3}$
The formation of two products of substitution, $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ and $\mathrm{Al}(\mathrm{acac})_{3}$, is expected in the reaction of $\mathrm{Cr}(\mathrm{acac})_{3}$ and $\mathrm{AlEt}_{3}$. However, the spectra of the reaction mixture showed a decrease in the intensities of the absorption bands of $\mathrm{Cr}(\mathrm{acac})_{3}$ and an increase in the absorption of $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ formed. The latter is the only product of substitution at all initial $\mathrm{Al} / \mathrm{Cr}$ ratios. Careful analysis of the spectra in benzene and cyclohexane showed complete absence of any traces of $\mathrm{Al}(\mathrm{acac})_{3}$-absorption bands (whose extinction coefficient was equal to 43600 $1 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}(\lambda=288 \mathrm{~nm})$ ). The results of the quantitative analysis of spectra of the reaction mixture are listed in Table 5. These data show that for $0<\mathrm{Al} / \mathrm{Cr}<3$ the system is a mixture of $\mathrm{Cr}(\mathrm{acac})_{3}$ and $\mathrm{Et}_{2} \mathrm{Al}$ (acac). The degree of transfer of acac ligands from Cr to Al depends on the initial ratio of $\mathrm{A} 1 / \mathrm{Cr}$. Thus at $\mathrm{Al} / \mathrm{Cr}=1.4 \mathrm{Cr}$ and Al have equal parts of the acac ligands by the end of the reaction ( 24 h ) (Fig. 5a, Table 5). At $\mathrm{Al} / \mathrm{Cr}=3$ complete transfer of acac ligands from the transition metal to aluminium is observed and $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ is produced in $100 \%$ yield. Its spectrum remains unchanged for several days (Fig . 5b). Excess $\mathrm{AlEt}_{3}(\mathrm{Al} / \mathrm{Cr}>3$ ) also results in $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ formation, which decomposes under the action of unreacted $\mathrm{AlEt}_{3}$ according to the above scheme. The decomposition rate is proportional to the $\mathrm{AlEt}_{3}$ content in the system and does not depend on the choice of solvent (Table 5, Fig. $5 \mathrm{c}, \mathrm{d})$.

Sartory et al. [11] studied the interaction of $\mathrm{AlEt}_{3}$ and $\mathrm{Cr}(\mathrm{acac})_{3}$ in benzene under nitrogen and, taking into account the results of magnetic susceptibility measurements, they came to the conclusion that $\mathrm{Cr}^{I I I}$ was reduced to $\mathrm{Cr}^{0}$ during the reaction ( $\mathrm{Al} / \mathrm{Cr}>3$ ). They could not identify the reaction products with IR and UV spectroscopy because of their extreme instability and the strong absorption of

TABLE 5
COMPOSITION CHANGES (\% acac) IN THE INTERACTION OF Cr(acac) ${ }_{3}$ WITH AIEt $_{3}$

| $\overline{\mathrm{Al} / \mathrm{Cr}_{r}}$ | Time (min) | Cyclohexane |  | Benzene |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{Cr}_{\text {(acac) }}^{3}$ | $\mathrm{Et}_{2} \mathrm{Al}$ (acac) | $\overline{\mathrm{Cr}}$ (acac) ${ }_{3}$ | $\mathrm{Et}_{2} \mathrm{Al}$ (acac) |
| 0.6 | 0 | 100 | ${ }^{-a}$ | 100 | - |
|  | 3 | 86 | 1 | 88 | 15 |
|  | 30 | 84 | 3 | 88 | 15 |
|  | 24 h | 80 | 13 | 88 | 15 |
| 1.4 | 0 | 100 | - | 100 | - |
|  | 3 | 96 | 5 | 61 | 39 |
|  | 30 | 84 | 19 | 53 | 51 |
|  | 60 | 71 | 30 | 54 | 50 |
|  | 24 h | 54 | 47 | 54 | 49 |
| 2.4 | 0 | 100 |  | 100 | - |
|  | 2 | 83 | 6 | 24 | 85 |
|  | 30 | 62 | 31 | 21 | 83 |
|  | 60 | 45 | 49 | 20 | 81 |
|  | 24 h | 13 | 79 | 21 | 80 |
| 3 | 0 | 100 | - | 100 | - |
|  | 3 | 62 | 32 | - | 100 |
|  | 30 | 40 | 57 | - | 100 |
|  | 60 | 17 | 81 | - | 100 |
|  | 24 h | 2 | 94 | - | - |
| 10 | 0 | 100 | - |  |  |
|  | 2 | - | 94 |  |  |
|  | 30 | - | 91 |  |  |
|  | 60 | - | 86 |  |  |
|  | 24 h | - | 76 |  |  |
| 23 | 0 |  |  | 100 | - |
|  | 2 |  |  | - | 97 |
|  | 30 |  |  | - | 82 |
|  | 60 |  |  | - | 72 |
|  | 24 h |  |  | - | 8 |
| 200 | 0 | 100 | - |  |  |
|  | 3 | - | 64 |  |  |
|  | 30 | - | 19 |  |  |
|  | 60 | - | 0 |  |  |

${ }^{a}$ Product not detected. \% acac for $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})=\left(3 \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})\right) / \mathrm{C}\left(\mathrm{Cr}(\mathrm{acac})_{3}\right)_{\text {init }}\right) \times 100 \%$. \% acac for $\mathrm{Cr}(\mathrm{acac})_{3}=\left(\mathrm{C}\left(\mathrm{Cr}(\mathrm{acac})_{3}\right) / \mathrm{C}\left(\mathrm{Cr}(\mathrm{acac})_{3}\right)_{\text {init. }}\right) \times 100 \%$.
benzene (used as solvent) and suggested the following scheme for the reaction:
$\mathrm{Cr}(\mathrm{acac})_{3}+3 \mathrm{AlEt}_{3} \rightarrow 3\left[\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}\right]+\mathrm{X}$
where X contains $\mathrm{Cr}, \mathrm{Al}$ and acac ligands. To study the mechanism in detail we determined the values of the reaction orders in each of the components in cyclohexane. The results are given in Table 6. The third order of the reaction in AlEt ${ }_{3}$ and the first in $\mathrm{Cr}(\mathrm{acac})_{3}$ presuppose primary formation of a $\mathrm{Cr}(\mathrm{acac})_{3}$ complex with three molecules of $\mathrm{AlEt}_{3}$. This results in complete exchange of acac ligands at Cr and ethyl radicals, already in the first stage of the reaction and explains the above observed absence of $\mathrm{Al}(\mathrm{acac})_{3}$ among the reaction products at $0<\mathrm{Al} / \mathrm{Cr}<3$.


Fig. 5. Absorption spectra of $\mathrm{Cr}(\mathrm{acac})_{3}(\mathrm{I})$ and the interaction of $\mathrm{Cr}(\mathrm{acac})_{3}$ with $\mathrm{AlEt}_{3}$ in cyclohexane at $\mathrm{Al} / \mathrm{Cr}=1.4$ (a), 3 (b), 200 (c) and in benzene at $\mathrm{Al} / \mathrm{Cr}=23$ (d) after 3 (2), 10 (3), 30 (4), 60 (5), 120 (6), 180 (7), 240 min (8) and 24 hours (9).

Hence, the reaction between $\mathrm{AlEt}_{3}$ and $\mathrm{Cr}(\mathrm{acac})_{3}$ can be written as follows:

$$
\begin{align*}
& \mathrm{Cr}(\mathrm{acac})_{3}+3 \mathrm{AlEt}_{3} \rightarrow 3 \mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})+ \mathrm{CrEt}_{3}  \tag{6}\\
& \mathrm{Cr}^{\circ}+3\left[\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}\right]
\end{align*}
$$

The suggested mechanism clarifies the difference between the reaction rates in cyclohexane and benzene (Table 5). The molecules of $\mathrm{Cr}(\mathrm{acac})_{3}$ in the solid state form associates in such a way that one of the three acetylacetonate rings is bonded to one of the three rings of another molecule due to Van der Waals interaction [12]. Cyclohexane is inert towards $\operatorname{Cr}(\mathrm{acac})_{3}$ [13] and can retain dimeric associates.

TABLE 6
REACTION ORDERS FOR $\operatorname{Cr}(\mathrm{acac})_{3}+$ AlEt $_{3}$ SYSTEM $^{a}$

| No. | $n_{c}$ | $n_{t}$ | $r$ | $S_{0}$ | $m$ |
| :--- | :--- | :--- | :--- | :--- | ---: |
| 1 | 3.15 |  | 0.980 | 0.246 | 4 |
| 2 | 2.81 |  | 0.988 | 0.168 | 4 |
| 3 |  | 1.04 | 0.911 | 0.134 | 19 |
| 4 |  | 0.977 | 0.993 | 0.030 | 9 |

[^1]Simultaneous attack on the three acac ligands in a $\operatorname{Cr}(\mathrm{acac})_{3}$ molecule is hindered and the reaction slows down (Fig. 5b, Table 5). Cryoscopic measurements on $\mathrm{Cr}(\mathrm{acac})_{3}$ show it to be monomeric in benzene [12], which is connected with the formation of spherical complexes of $\mathrm{Cr}(\mathrm{acac})_{3}$ with benzene, $\mathrm{Cr}(\mathrm{acac})_{3} \cdot 3 \mathrm{C}_{6} \mathrm{H}_{6}$ [13], and allows the approach of three $\mathrm{AlEt}_{3}$ molecules to the three acac ligands of the $\mathrm{Cr}(\mathrm{acac})_{3}$ molecule; thus the reaction proceeds almost spontaneously (Table 5). Thus in the $\operatorname{Cr}\left(\mathrm{acac}_{3}\right)_{3}-\mathrm{AlEt}_{3}$ system ( $0<\mathrm{Al} / \mathrm{Cr}<200$ ) transfer of acac ligands from Cr to Al occurs with the formation of only the product of substitution, $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$. This can be explained by the necessity of the preliminary formation of a $\mathrm{Cr}(\mathrm{acac})_{3}$ complex with three $\mathrm{AlEt}_{3}$ molecules and the subsequent simultaneous exchange of acac ligands. In the this case, as well as for $\mathrm{Fe}^{\mathrm{II}}, \mathrm{Co}^{\mathrm{III}}$ and $\mathrm{Ni}^{\mathrm{II}}$ acetylacetonate, $\mathrm{Cr}^{0}$, formed in the decomposition of $\mathrm{CrEt}_{3}$, is presumably held in solution by $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$.
$\mathrm{Pd}(\mathrm{acac})_{2}-\mathrm{AlEt}_{3}$
In the interaction of $\mathrm{Pd}(\mathrm{acac})_{2}$ with $\mathrm{AlEt}_{3}$ only one substitution product, $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$, is formed at initial ratios of $\mathrm{Al} / \mathrm{Pd}$ from 0.3 up to 600 .

Interaction in cyclohexane. At $0<\mathrm{Al} / \mathrm{Pd}<2$ the spectrum of the reaction mixture shows a decrease of absorption in the region $200-250 \mathrm{~nm}$ and an increase of absorption at $260-310 \mathrm{~nm}$, caused by the decay of $\mathrm{Pd}(\mathrm{acac})_{2}$ and the formation of $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$. The spectra show simultaneous presence of $\mathrm{Pd}(\mathrm{acac})_{2}$ and $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ in the solution at $0<\mathrm{Al} / \mathrm{Pd}<2$ (Table 7). 2-3 min after mixing the components the conversion degree reaches $90-100 \%$ (Table 7).

At $\mathrm{Al} / \mathrm{Pd}=2.1$ (after 2 min reaction) the spectrum of the system is the same as that of pure $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$, which is formed with $100 \%$ yield: $C\left(\mathrm{Pd}(\mathrm{acac})_{2}\right)$ init. $=0.29$ $\times 10^{-3} M ; C\left(\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})\right)=0.58 \times 10^{-3} \mathrm{M}$ (Fig. 6a).

Excess $\mathrm{AlEt}_{3}(\mathrm{Al} / \mathrm{Pd}=6,36,600)$ results in immediate formation of $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$, which reacts with the $\mathrm{AlEt}_{3}$ residue in a way similar to all the above systems. The rate of decomposition is proportional to the $\mathrm{AlEt}_{3}$ concentration in the system (Table 7).

The absence of $\mathrm{Al}(\mathrm{acac})_{3}$ among the reaction products suggests the following scheme:


TABLE 7
$\operatorname{Pd}(\mathrm{acac})_{2} \mathrm{AND} \mathrm{Et} 2_{2} \mathrm{Al}(\mathrm{acac})$ CONCENTRATIONS IN THE INTERACTION OF Pd(acac) $)_{2}$ WITH AlEt $_{3}$ IN CYCLOHEXANE

| $\overline{\mathrm{Al} / \mathrm{Pd}}$ | $\begin{aligned} & \text { Time } \\ & (\mathrm{min}) \end{aligned}$ | $\underline{\mathrm{Pd}(\mathrm{acac})_{2}}$ |  | $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\overline{C \times 10^{3}}$ <br> ( $M$ ) | \% acac | $\begin{aligned} & \overline{C \times 10^{3}} \\ & (M) \end{aligned}$ | \% acac |
| 0.3 | 0 | 0.26 | 100 | - | - |
|  | 3 | 0.22 | 86 | 0.09 | 17 |
|  | 30 | 0.22 | 83 | 0.10 | 19 |
| 0.7 | 0 | 0.32 | 100 | - | - |
|  | 3 | 0.22 | 67 | 0.14 | 21 |
|  | 30 | 0.21 | 65 | 0.14 | 22 |
|  | 60 | 0.21 | 65 | 0.14 | 22 |
| 1.0 | 0 | 0.29 | 100 | - | - |
|  | 3 | 0.15 | 53 | 0.27 | 47 |
|  | 30 | 0.15 | 53 | 0.27 | 47 |
| 1.5 | 0 | 0.32 | 100 | - | - |
|  | 2 | 0.09 | 27 | 0.43 | 67 |
|  | 30 | 0.08 | 25 | 0.45 | 70 |
| 1.8 | 0 | 0.29 | 100 | - | - |
|  | 3 | 0.03 | 11 | 0.54 | 94 |
|  | 30 | 0.02 | 9 | 0.53 | 92 |
| 6.0 | 0 | 0.32 | 100 | - | - |
|  | 2 | - | - | 0.59 | 91 |
|  | 10 | - | - | 0.57 | 90 |
|  | 30 | - | - | 0.55 | 86 |
|  | 60 | - | - | 0.52 | 81 |
|  | 240 | - | - | 0.42 | 65 |
|  | 24 h | - | - | 0.35 | 54 |
| 36 | 0 | 0.32 | 100 | - | - |
|  | 3 | - |  | 0.54 | 84 |
|  | 10 | - | - | 0.46 | 71 |
|  | 30 | - | - | 0.32 | 49 |
|  | 60 | - | - | 0.19 | 30 |
|  | 120 | - | - | 0.09 | 14 |
|  | 180 | - | - | 0.07 | 12 |
| 600 | 0 | 0.30 | 100 | - | - |
|  | 3 | - | - | 0.31 | 54 |
|  | 10 | - | - | 0.26 | 45 |
|  | 30 | - | - | 0.06 | 10 |
|  | 60 | - | - | - | - |

where $A$ is an acetylacetonate ligand, $R$ is an ethyl radical and G.Pr. are gaseous products. The absence of interaotion of $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ with $\mathrm{Pd}(\mathrm{acac})_{2}$ (similarly to routes IIa and IIc in eq. 3) is probably conditioned by the high stability of the palladium-oxygen bond. The $\mathrm{Pd}-\mathrm{O}$ bond is known to be much stronger than that of $\mathrm{Ni}-\mathrm{O}$ [15].

Interaction in benzene. At $\mathrm{Al} / \mathrm{Pd}=1.5$ a stepwise decrease of $\mathrm{Pd}(\mathrm{acac})_{2}$ absorption is observed and a broad absorption band appears at $275-330 \mathrm{~nm}$ (Fig. 6b). This new band is similar to that in the $\mathrm{Ni}(\mathrm{acac})_{2}-\mathrm{AlEt}_{3}$ system $(\mathrm{Al} / \mathrm{Ni}=2.1)$ and can probably be assigned to the total absorption of EtPd(acac) and $\mathrm{Et}_{2} \mathrm{Al}$ (acac). The spectrum does not change during five days. Quantitative analysis of the products


Fig. 6. Absorption spectra of $\mathrm{Pd}(\mathrm{acac})_{2}(\mathrm{I})$ and the interaction of $\mathrm{Pd}(a \operatorname{ac})_{2}$ with $\mathrm{AlEt}{ }_{3}$ in cyclohexane at $\mathrm{Al} / \mathrm{Pd}=2.1$ (a) and in benzene at $\mathrm{Al} / \mathrm{Pd}=1.5$ (b), 2 (c), 3.7 (d), after 2 (2), 10 (3), 30 (4), 60 (5), 120 min (6), 24 hours ( 7 ) and 5 days (8).
after exposure to air and moisture shows the presence of unreacted $\mathrm{Pd}(\mathrm{acac})_{2}$, comprising $25 \%$ of the initial concentration and in agreement with the initial $\mathrm{Al} / \mathrm{Pd}$ ratio.

At $\mathrm{Al} / \mathrm{Pd}=2$ a similar picture is observed but the absorption of initial $\mathrm{Pd}(\mathrm{acac})_{2}$ decreases and the band corresponding to the formation of a new product increases much faster (Fig. 6c). In contrast to the reaction of $\mathrm{AlEt}_{3}$ with $\mathrm{Ni}(\mathrm{acac})_{2}(\mathrm{Al} / \mathrm{Ni}=$
2.1) decomposition of the intermediate followed by $\mathrm{Et}_{2} \mathrm{Al}$ (acac) formation is not observed. Comparison of these data with the results of the reaction between $\mathrm{Pd}(\mathrm{acac})_{2}$ and $\mathrm{AlEt}_{3}$ in cyclohexane suggests the presence of complexes able to bond $\mathrm{AlEt}_{3}$ and $\mathrm{EtPd}(\mathrm{acac})$ in benzene, which is the reason for the complete cessation of the reaction. This is why there are no signs of pure $\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})$ in the spectrum. Taking into account the isoelectronic structures of Pd and Ni and the coincidence of the spectra of the reaction products, we suggest the following structure for the relatively stable intermediates in benzene:


With excess $\mathrm{AlEt}_{3}$ in the system ( $\mathrm{Al} / \mathrm{Pd}=3.7$ ), stage IIa proceeds faster. After 24 hours the spectrum of the system coincides with that of pure $\mathrm{Et}_{2} \mathrm{Al}$ (acac) (formed in $100 \%$ yield) (Fig. 6d). In this case the reaction proceeds due to the excess of unbound $\mathrm{AlEt}_{3}$ present.

## Experimental

Acetylacetonates of $\mathrm{Cr}^{\mathrm{III}}, \mathrm{Fe}^{\mathrm{III}}, \mathrm{Co}^{\mathrm{III}}, \mathrm{Co}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Pd}^{\mathrm{II}}$ were synthesized by general methods, recrystallized from benzene and sublimed under vacuum ( $10^{-3}$ Torr) just before reaction. $\mathrm{AlEt}_{3}$ was distilled under low pressure, carefully degassed and poured into glass balls.

Solvents were purified according to standard techniques, dried with $\mathrm{CaH}_{2}$ and sodium mirror, and degassed under vacuum.

## UV spectra

UV spectra of cyclohexane and benzene, as solvents, were recorded between $200-360 \mathrm{~nm}$ and $260-450 \mathrm{~nm}$, respectively (Specord UV-Vis spectrometer). Quartz cells ( $\varnothing=0.1 \mathrm{~mm}$ ) were used for spectral investigations of the reactions under vacuum at $25^{\circ} \mathrm{C}$. The concentrations were calculated from the maximum absorption for a single component and by the consecutive approaches procedure in the case of mixture components with overlapping absorption bands. The following analytical points were taken in the calculation of polycomponent systems: $\mathrm{Co}(\mathrm{acac})_{3}: 225 \mathrm{~nm}$, $\epsilon=397001 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} ; \mathrm{Ni}(\mathrm{acac})_{2}: 225 \mathrm{~nm}, \epsilon=54001 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} ; \mathrm{Cr}(\mathrm{acac})_{3}: 338$ $\mathrm{nm}, \epsilon=166001 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} ; \operatorname{Pd}(\mathrm{acac})_{2}: 329 \mathrm{~nm}, \epsilon=113001 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} ; \operatorname{Al}(\mathrm{acac})_{3}$ : $288 \mathrm{~nm}, \epsilon=436001 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$; Fe(acac) $)_{3}: 234 \mathrm{~nm}, \epsilon=175001 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$; $\mathrm{Et}_{2} \mathrm{Al}$ (acac): $278 \mathrm{~nm}, \epsilon=47001 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} ; 301 \mathrm{~nm}, \epsilon=37001 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$ and 333 $\mathrm{nm}, \epsilon=27501 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$ in the presence of $\mathrm{Al}(\mathrm{acac})_{3}$.

The continuous absorption was-taken in to account in the case of the $\mathrm{Pd}(\mathrm{acac})_{2}-\mathrm{AlEt}_{3}$ system. The background of the absorption was found to be independent of the wave length and to be constant for all spectral regions. Van 't Hoff's [16] method was used to obtain the reaction orders in $\mathrm{AlEt}_{3}$ and $\operatorname{Cr}(\mathrm{acac})_{3}$. The calculations of the reaction orders were made by the least-squares method. Coefficients of correlation ( $r$ ) and regression standard ( $S_{0}$ ) were used as statistical characteristics of regression.

## Magnetic measurements

Solutions of metal acetylacetonates and $\mathrm{AlEt}_{3}$ were prepared in glass balls under vacuum. Benzene was removed from the solution after one hour. The magnetic measurements were carried out in an inert atmosphere in quartz ampules. A small amount of helium was admitted to the ampule to act as a heat-transfer gas. The magnetic susceptibility was measured by Faraday's method in the range $4.2-293 \mathrm{~K}$ and in a ficld of $1-10 \mathrm{Kgauss}$. The magnctic moment was estimated from $\mu_{\text {eff }}=$ $2.84 \sqrt{\chi_{\mathrm{at}} T}$, where $\chi_{\mathrm{at}}$ is the molar paramagnetic susceptibility. The content of a ferromagnetic metal ( $m$ ) was estimated from the correlation: $m=\mu_{\mathrm{f}} / \sigma$, where $\sigma$ is the specific saturation [17]. $\mu_{\mathrm{r}}$ is the magnetic moment of the ferromagnetic component, which was estimated from the slope of $\chi_{a t}=f(1 / H)$. The total contents of metal was determined on a atomic Saturn absorption spectrometer.

## References

[^2]
[^0]:    ${ }^{a}$ Product not detected. ${ }^{b}$ In benzene, \% (acac for $\mathrm{Et}_{2} \mathrm{Al}$ (acac) is equal to ${ }^{3} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{Al}(\mathrm{acac})\right) /$ $C\left(\mathrm{Fe}(\mathrm{acac})_{3}\right)_{\text {init }} \times 100 \%$.

[^1]:    ${ }^{a} n_{c}=$ concentration order of the reaction in AlEt $;_{3} ; n_{t}=$ time order of the reaction in $\mathrm{Cr}(\mathrm{acac})_{3}$; $r=$ correlation coefficient; $S_{0}=$ regression standard; $m=$ number of measurements.

[^2]:    1 K. Tamai, T. Saito, Y. Uchida and A. Misono, Bull. Chem. Soc. Japan, 38 (1965) 1575.
    2 S.Tyrlik and M. Michalski, J. Organomet. Chem., 102 (1975) 104.
    3 S. Pasynkiewicz, A. Pietrzykowski and K. Dowbor, J. Organomet. Chem., 78 (1974) 56.
    4 G.V. Ratovsky, T.V. Dmitrieva, L.O. Nindakova and F.K. Schmidt, Koord. Khimiya, 6 (1980) 61.
    5 T.V. Dmitrieva, G.V. Ratovsky, V.I. Donskikh and F.K. Schmidt, Koord. Khimiya, 7 (1981) 1030.
    6 W.R. Kroll and W. Naegele, J. Organomet. Chem., 19 (1969) 440.
    7 V.S. Tkatch, F.K. Schmidt, V.V. Saraev and A.V. Kalabina, Kinet. Katal., 15 (1974) 618.
    8 M. Peuckert, Olefinoligomerisierung mit Nickel-Einkomponentenkatalysatoren. Dissertation, Aachen, 1980, p. 209.
    9 R.H. Holm and F.A. Cotton, J. Amer. Chem. Soc., 80 (1958) 5658.
    10 F.K. Schmidt, V.V. Saraev, Y.S. Levkovskii, V.G. Lipovich, V.A. Gryznykh, G.V. Ratovsky, T.V. Dmitrieva and L.O. Ninakova, React. Kinet. Catal. Lett., 10 (1979) 199.
    11 G. Sartory and G. Costa., Z. Elektrochem., 63 (1959) 105.
    12 B. Morosin, Acta Cryst., 19 (1965) 134.
    13 A.N. Kitaigorodskii and B.M. Nekinelov. Proc. Moscow Fiz. Techn. Inst., Ser. General and Molecular Physics, Dolgoprudniy, (1978) 180.
    14 K.N. Mahendra, G.K. Parashar and R.S. Mehrotra, Trans. Met. Chem., 3 (1978) 133.
    15 K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley Inc., New York, London 1963.
    16 K.J. Laidler, Reaction Kinetics, Vol I, Pergamon Press, Oxford, London, 1963, p. 25.
    17 W. Sellwood, Magnetochemistry, Interscience Publishers Inc., New York, 1956, p. 48.

